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Linearity Limits of the Varactor-Controlled
Osc-Mod Circuits

DARKO KAJFEZ, SENIOR MEMBER, IEEE, AND EUGENE J. HWAN, MEMBER, IEEE

Abstract — A method for optimum selection of the natural frequencies of
a varactor-controlled oscillator (0sc-mod) is developed for the purpose of
providing the best modulation linearity, while still retaining practical fea-
tures such as continuous tuning. Highly linear operation was found to be
possible using conventional abrupt varactors if the circuit has one pole and
two zeros situated below the operating frequency. The limits of the
maximum realizable modulation bandwidths are established for a linearity
of one percent, with and without the requirement for continuous tuning.

I. INTRODUCTION

HE OSCILLATOR-MODULATOR (osc-mod) is a

special case of the voltage-controlled oscillator used
for generating the FM signal in microwave communica-
tions equipment. Three specific requirements make the
osc—mod different from other VCO’s: 1) strict linearity in
a relatively narrow range of frequencies, 2) very low noise,
and 3) high efficiency.

A variety of different osc-mod circuits have been de-
scribed (see, e.g., [1]-[10]). This paper addresses the first of
the three topics listed above: the linearization of the varac-
tor-controlled osc-mod. The analysis is intended to be
general and is not limited to a specific circuit. The general
approach is achieved by describing the osc-mod circuit in
terms of the natural frequencies of a lossless two-port when
one of its ports is short circuited. The goal is to establish
the theoretical performance limits which can be used as
design guidelines.

II. NORMALIZED MODULATION CURVE

Fig. 1 shows the general osc—mod equivalent circuit
which is used in the present analysis. Port 1 is the reference
plane of the active device maintaining the oscillations, and
port 2 is a varactor junction which is utilized to modulate
the oscillation frequency. Between these two nonlinear
semiconductor devices is a linear two-port incorporating
one or several resonant circuits, package elements, mechan-
ical tuning devices, sections of transmission lines, and
various parasitic elements. The baseband modulation volt-
age is brought to the osc-mod at port 3 and the RF output
power is taken from port 4. To simplify the analysis, it will
be assumed that the two-port is lossless.
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Fig. 1. Osc—mod block diagram.
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Fig. 2. Reactance of a lossless network.

For the osc-mod described in Section VI, the active
device at port 1 is the base terminal of a microwave bipolar
transistor. The oscillations occur at the frequency at which
the reactance X,;, “seen” by the active device, is passing
through series resonance. The oscillation frequency w, can
thus be determined from the condition X,;(wy)=0. Ne-
glecting the real parts of the impedances at both ports, the
oscillation frequency can also be found from the following
condition:

Xzz(“’0)="X/2(°~’0) (1)

where X, is the reactance “seen” by the varactor junction
when port 1 is short circuited, and X, is the reactance of
the varactor junction. The reactance X,, can be expressed
by Foster’s theorem in terms of poles and zeros. For
instance, if the poles occur at the origin and at w, while the
zeros occur at w, and w; as in Fig. 2, the reactance Z , is

(= ) - o2) ;
w(wz—wg) . &)

As seen in Fig. 2, the oscillation frequency w, is the one at
which (1) is satisfied.
The varactor junction capacitance can be expressed as

_ (Vb+¢c)a. (3)

wCy
V, is the reverse bias voltage, ¢, is the contact potential,
and C, is the junction capacitance at V, +¢.=1 V. The

Xzz(w) =K

Xp=
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Fig. 3. Possible realizations of osc~mod two-ports.
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bias voltage consists of the constant part V,, and of the
modulation voltage V,,. The normalized modulation volt-
age 1s then denoted by v

Vv
(R / B . 4
Vio + &, “)

When o = wy, v =0. This leads to
(0 - ) (0}~ ) (0~ 2) |
(@f = w0}) (0 - w3)(wf— w})

It is convenient to normalize, also, the frequency as fol-
lows:

p

1+v=

@,
I—
_—_Qt

fori=1,2,3.
Wo

(5)

In the vicinity of the operating point, the normalized
frequency is

(6)

where 11 = (@ — wy)/w, is the normalized frequency change

(a very small number). The modulation curve is then

brought to its normalized form

RIS
1- Q2

w
21+
W N

1-92

1+v 5
(1+9)" - 03

1/a
(L+m) -3
1-92 '

(7)
If the lossless circuit between the varactor junction and the
transistor base has more than three finite natural frequen-
cies, expression (7) can be easily expanded to include any
additional zeros and poles. The conceptual advantage of
using the block diagram from Fig. 1 is describing the
modulation curve in terms of (normalized) poles and zeros,
irrespective of any particular circuit diagram.

III. SINGLE RESONATOR

The simplest possible two-port between the varactor and

the active device is a single series resonant circuit shown in
Fig. 3(a). The modulation curve (7) simplifies to

A 1/«
1+v=[1+A1n+71n2 (8)
The constant 4, is an abbreviation for
2
A= . 9

Since 7 is a small number, it is convenient to use the
binomial expansion to obtain first two terms of the Taylor
series for v as follows:

(10)

v=Cm+ Con.
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The constants C; and C, are
= :1_1 (11)
Cz=%[l+(§-—l)Al]. (12)

The slope coefficient C; is the inverse of the normalized
sensitivity S,

. Vb+¢c

_dn _
S 7 (13)

" d =5

@o

where S is the actual sensitivity in hertz per volt. Thus, the
normalized sensitivity of the circuit in Fig. 3(a) must
satisfy the following equation:

a -
5,- 2(1-92). (19
The required value of S, is typically a small number: at
fo=2 GHz, a sensitivity S=4 MHz/V for a varactor
operating at V, + ¢, =10 V gives the value of S, = 0.02.

The modulation curve is linearized by requesting C, = 0.

This leads to
ae 2
1+92°

(15)

Since £, <1, a must be larger than unity. Therefore, the
only possible way to linearize the modulation curve for a
circuit consisting of a single resonator is to use a hyper-
abrupt varactor. Equations (14) and (15) can be used as
design expressions for choosing a correct varactor a for a
specified S,. As an example, for S, =0.02, the required
varactor exponent is a«=1.02. Even though hyperabrupt
varactors with a specific exponent are available, the single-
resonator circuit does not provide sufficient flexibility to
accommodate small variations in a. The circuit described
in the next section offers more degrees of freedom.

IV. Two COUPLED RESONATORS

Several authors ([1]-[4]) have shown that when the
osc—mod consists of two coupled resonant circuits, it is
possible to linearize the modulation curve by using conven-
tional varactors with a<1. For the inductively coupled
pair of lumped resonant circuits in Fig. 3(b), the position
of natural frequencies w;, w,, and w, (when port 2 is
short-circuited) is such as shown in Fig. 2. The circuit
reactance X, is a growing function of frequency displaying
two zeros denoted w; and w; and one pole denoted w,. In
order to achieve resonance with the varactor junction
capacitance, reactance X;, must be positive. Therefore, the
operating frequency w, is situated above the zero w,.

The linearity of the modulation curve for the circuit
consisting of two resonators can be studied by expanding
(7) in a three-term Taylor series

v=Cm+Cx?> + Cyn. (16)
Using the notation from (9)
2
;= fori=1,2,3 17
e a7)

H
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Fig. 4. Optimum position of natural frequencies for C, = C; =0, a = 0.5.

the coefficients in Taylor’s expansion are expressed as
follows:

1
C1=;(A1_A2+A3) (18)
Gmglerc-ta-a+a)| 9
G g 1
G=-3-75-3 +cz(2+cl)

1

+ 32 (A - 45+ 43). (20)

The normalized sensitivity at the center frequency S, is
usually specified at the outset of the design. Since S,,=
1/C,, we obtain from (18)

Ay — Ay + Ay = =

5 (21)

The linearity of the modulation curve requires C, = 0. This
o

results in
1
S nQ Sn 0 )

Since there are three natural frequencies to be selected, it is
possible to introduce the additional requirement C, =0,
obtaining the following equation:

a |3 1 (3 1
The above three nonlinear equations must be solved
numerically in order to find the optimum position of
natural frequencies which force both the second and third
coefficient in the modulation curve (16) to vanish. For the
abrupt junction varactors with a= 0.5, the results of the
numerical solutions are shown in Fig. 4.

The calculated values £, &2,, and €, can now be sub-
stituted in (7), and the relative frequency n can be gradu-
ally varied so that the normalized modulation curve v(7) is
evaluated. Instead of plotting this curve, the sensitivity
versus frequency has been computed by numerical differ-
entiation and plotted in Fig. 5. Three different values of
the normalized sensitivity are shown: S,, = 0.01, 0.02, and
0.03. Using the data computed in such a manner, it is
possible to read the values Q; and @, for which the
sensitivity S, departs one percent from its nominal value
S,0- The corresponding relative bandwidths

AQ=Q,-Q,

are summarized in Table 1.

LB A2+ A2 (1+ (22)
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Fig. 5. Normalized modulation curves for the natural frequencies from
Fig. 4. Curve D: S, =0.01, Curve E: S, = 0.02, Curve F: S,; = 0.03.

TABLE I
SnO AR (172) AQ (1%)
(Fig. 5) (Fig. 9)
0.01 0.0109 0.0049
0.02 0.0214 0.0108
0.03 0.0319 0.0191

It is seen that the sensitivity curves are S-shaped because
the first and the second derivatives of sensitivity are zero.
It is further seen that the higher the chosen value of S,
the wider the bandwidth within which the departure from
linearity stays within prescribed limits. For instance, for 1
percent departure from linearity, the sensitivity S,, = 0.02
results in the relative bandwidth of 0.0214, while for S, =
0.03 the relative bandwidth is 0.0319. These are optimum
values that can be achieved with a circuit which has three
finite natural frequencies as shown in Fig. 2. This is true
for any two-port with natural frequencies as shown in Fig,
2. For example, Aitchison and Gelsthorpe [7] have shown
that the circuit shown in Fig. 3(c) is also well-suited for
linearization of a voltage-controlled oscillator.

Starting from the prescribed values of optimal frequen-
cies, it is possible to synthesize the two-port lumped ele-
ments. As an example, suppose the sensitivity S = 3 MHz/V
is desired at a carrier frequency of 1.75 GHz. The varactor
has ¢, = 0.7 V, a= 0.5, and 1.4-pF junction capacitance at
Vo =10 V. Using the natural frequencies from Fig. 4, the
element values for the lumped circuit in Fig. 3(b) are
obtained as follows: L,=37.5 nH, C,=0.291 pF, M=
0.594 nH, L,=1.4nH, C,=6.42 pF.

V. CoNTINUITY OF TUNING

At microwave frequencies, varactor Q is moderately low
so that the varactor junction in Fig. 1 must be modeled by
a series combination of the capacitance C; and resistance
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Fig. 6. Impedance Z; of the circuit from Fig. 3(b) (C, = C,; = 0).
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Fig. 7. The loop of the impedance Z, is situated below the real axis.

R,. For Q, =25 at the bias of 10 V, the resistance in the
circuit from the previous example is R,=2.6 Q. Even
though the two-port between ports 1 and 2 is lossless, the
input impedance Z, “seen” by the active device has a
nonvanishing real part. For the circuit in the above exam-
ple, the computed input impedance is shown in Fig,. 6.

The reactance passes through zero at 1.75 GHz as re-
quired for the operation of the oscillator. Unfortunately,
the impedance forms a loop on the complex plane at
frequencies below 1.75 GHz. Such a loop has an undesired
property as far as the active device is concerned: it is
possible for the oscillation frequency to jump from 1.75
GHz to about 1.6 GHz where another series resonance
occurs, and the reactance passes through zero again. In
view of Kurokawa’s graphical interpretation [11] of oscil-
lation conditions, the frequency jump can be prevented by
moving the loop below the real axis so that there will be
only one intersection of the load line Z, (w) and the device
line (here, the device line coincides with the real axis). The
desired behavior of Z,(w) is shown in Fig. 7.

The loop will be located below the real axis when the
following approximate condition is satisfied for the circuit
in Fig. 3(b):

k2Q.Q
Q2>07 1+ —=21 . 24
The derivation of this condition is given in the Appendix.
@, = w, /w, is the normalized frequency of the pole from
Fig. 2, and &, = w,/w, is the normalized resonant frequency
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Fig. 8. Optimum position of natural frequencies for a = 0.5 and Q, =10,
satisfying the condition for continuous tuning.

of the resonant circuit on the varactor side when the
varactor is added

w,= “©rG (25)
' LCC, :
;= w; /w, is defined by
1
w = 26
- e (26)

The inductive coupling coefficient is

M2

2_
k L

(27)

C, is the junction capacitance at the operating bias voltage,
and @, is the varactor Q at the same bias voltage

1
wOC'sz '

It is now possible to design the circuit in Fig. 3(b) so that
the frequency jumps will be prevented by forcing (24) to be
an equality (loop almost touching the real axis). The other
two equations for selection of natural frequencies, as be-
fore, are (21) and (22). The numerical solution of the three
equations for @, =10 and «= 0.5 is shown in Fig. 8. It is
interesting to mention that no solution can be found for
S, o outside the range shown in Fig. 8. Thus, for a given
value of Q,, there exists a limited range of sensitivities
which permit the linearization of the modulation curve
simultaneously with the condition that tuning be continu-
ous.

When &, Q,, and £, are substituted in (7), it is possible
to compute the modulation curve for the natural frequen-
cies that satisfy (21) and (22), and the equality in (24). The
results are shown in Fig. 9. Note that the curves are
U-shaped, and no longer S-shaped since C; # 0. However,
the continuous tuning of the osc—mod is now assured by
the fact that the loop of the impedance Z, is positioned
below the real axis.

The curves in Fig. 9 present the theoretical performance
limits which one can hope to approach in practice using
two coupled microwave resonators and satisfying the con-
dition of continuous tuning. The corresponding relative
bandwidths for 1-percent nonlinearity are summarized in
Table I. As an example, curve B (S,, = 0.02) shows that
the sensitivity departs for less than 1 percent from its
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Fig. 9. Normalized modulation curves for the natural frequencies from
Fig. 8. Curve 4: S,; = 0.01, Curve B: S,, = 0.02, Curve C: S,,=0.03.

nominal value over the relative bandwidth of 0.0108. Thus,
for a varactor having =05 and Q,=10, V,=10 V,
¢.=0.7 V, operating at f,=2 GHz, the sensitivity of
S =0.02-2000/10.7= 3.7 MHz/V can be maintained
within 1-percent limits in a bandwidth of 0.0108-2000 =
21.6 MHz.

VL

The guidelines summarized in Fig. 9 were applied in the
development of the osc—mods used in a new generation of
analog microwave radios [12]. The discussion of the actual
circuits is outside the scope of this paper. It was found,
however, that although lumped-element models were used,
the guidelines were also applicable to distributed circuits.
This is to be expected since the only difference between the
two types of circuits is the presence of poles and zeros
above the pole-zero configuration chosen for the osc-mod.
These higher frequency poles and zeros usually have only a
minor effect on the linearity.

APPLICATION

VII.

An expression for the modulation curve has been derived
for a lossless two-port tuning circuit model. The require-
ments C, =C,; =0 in the Taylor series expansion of the
modulation curve leads to an optimum selection of reso-
nant frequencies 2,, £,, and {;, which are then used to
synthesize the tuning circuit. The resulting modulation
curve is S-shaped. For a circuit consisting of two coupled
resonators, the requirement for continuous tuning is used
in place of the condition C; = 0. Using this requirement,
new values of resonant frequencies {,, £,, and Q, were
computed. The corresponding modulation curves are now
U-shaped, and the bandwidth is approximately one-half
that of the ideal. Limits of modulation bandwidth were
tabulated for 1-percent linearity for the ideal and practical
cases.

Except for the case of the osc—mod circuit containing a
single resonator, there is no evidence that hyperabrupt

CONCLUSIONS
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Fig. 10. Two-port from Fig. 3(b) terminated in a varactor consisting of
R, and C.

varactors offer any advantages over conventional abrupt
varactors, as far as linearity of the modulation curve is
concerned.

APPENDIX

When port 2 of the osc-mod is terminated by a varactor
consisting of the resistance R, and capacitance C, as
shown in Fig. 10, the input impedance Z; becomes

_ (wM)’
Ztl_ .]w2LtB2+ Rs+ jwlLvBI. (A]‘)
w, is defined by (25) and w, is given by
1
Wy = . (A2)
© LG,
B, and B, are functions of frequency as follows:
_L Y
Bw)= o @ (A3)
L _ %
Br(w)= @, ©° (A4)

In the vicinity of frequency w,, 8, is a fast-varying func-
tion, whereas 8, is a slow-varying function of w. In order
to find the point w,, at which the slope of Z,; is horizontal
(see Fig. 7), an approximation can be made that B, is
constant and only B, is variable. Then, the frequency w,, is
found from

1
wmzw,(l—-z—Ql) (AS)

where @, is defined as
C +C,

UoRGE (49

Since Q,> Q,, we have w, ~w, At this frequency, the
imaginary part of the impedance Z, in (Al) is approxi-
mately given by

1
Xa(w,,) =w, LBy (w,)+ EwleQ1k2- (A7)

The loop will be situated below the imaginary axis when
X,(w,,)<0. From this condition, one obtains the follow-
ing (using w,, = w,):

wz(& - -‘?2)+ %(«J,Q,k2 <0.

wy Wy

(A8)

From (25), (26), (28), and (A®6), it is possible to express Q,
in terms of Q, as follows:
W,

Q1=Qv wz .

J

(A9)

Substituting (A9) into (AS8), one obtains 24).
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