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Linearity Limits of the Varactor-Controlled
Osc–Mod Circuits

DARKO KAJFEZ, SENIOR MEMBER, IEEE, AND EUGENE J. HWAN, MEMBER, IEEE

Abstract —A method for optimum selection of the natural frequencies of

a varactor-controlled oscillator (ose-mod) is developed for the purpose of

providing the best modulation linearity, while still retaining practicaf fea-

tures such as continuous tuning. Highfy linear operation was found to be

possible using conventional abrupt varactors if the circuit has one pole and

two zeros situated below the operating frequency. The limits of the

maximum realizable modulation bandwidths are established for a linearity

of one percent, with and without the requirement for continuous tuning.

I. INTRODUCTION

T HE OSCILLATOR–MODULATOR (osc–mod) is a

special case of the voltage-controlled oscillator used

for generating the FM signal in microwave communica-

tions equipment. Three specific requirements make the

osc–mod different from other VCO’S: 1) strict linearity in

a relatively narrow range of frequencies, 2) very low noise,

and 3) high efficiency.

A variety of different osc–mod circuits have been de-

scribed (see, e.g., [1]–[10]). This paper addresses the first of

the three topics listed above: the linearization of the varac-

tor-controlled osc–mod. The analysis is intended to be

general and is not limited to a specific circuit. The general

approach is achieved by describing the osc–mod circuit in

terms of the natural frequencies of a lossless two-port when

one of its ports is short circuited. The goal is to establish

the theoretical performance limits which can be used as

design guidelines.

II. NORMALIZED MODULATION CURVE

Fig. 1 shows the general osc–mod equivalent circuit

which is used in the present analysis. Port 1 is the reference

plane of the active device maintaining the oscillations, and

port 2 is a varactor junction which is utilized to modulate

the oscillation frequency. Between these two nonlinear

semiconductor devices is a linear two-port incorporating

one or several resonant circuits, package elements, mechan-

ical tuning devices, sections of transmission lines, and

various parasitic elements. The baseband modulation volt-

age is brought to the osc–mod at port 3 and the RF output

power is taken from port 4. To simplify the analysis, it will

be assumed that the two-port is lossless.
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Fig. 1. Osc–mod block diagram

Fig. 2. Reactance of a lossless network.

For the osc–mod described in Section VI, the active

device at port 1 is the base terminal of a microwave bipolar

transistor. The oscillations occur at the frequency at which

the reactance X,l, “seen” by the active device, is passing

through series resonance. The oscillation frequency aO can

thus be determined from the condition XZl(aO) = O. Ne-
glecting the real parts of the impedances at both ports, the

oscillation frequency can also be found from the following

condition:

XZ2(LJO)=– XJ2(UO) (1)

where X,2 is the reactance “seen” by the varactor junctio’n

when port 1 is short circuited, and Xjz is the reactance of

the varactor junction. The reactance X,z can be expressed

by Foster’s theorem in terms of poles and zeros. For

instance, if the poles occur at the origin and at Oz while the

zeros occur at al and t+ as in Fig. 2, the reactance Zlz is

x (@)=K(’J2-’J:)(’+’”:)
12

~(@2-@:) “

(2)

As seen in Fig. 2, the oscillation frequency tiO is the one at

which (1) is satisfied.

The varactor junction capacitance can be expressed as

X,2= – (v,+%)”
Lh)C,o “

(3)

Vb is the reverse bias voltage, @Cis the contact potential,

and C,O is the junction capacitance at V~ + +C= 1 V. The
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Fig. 3. Possible realizations of osc–mod two-ports. The slope coefficient Cl is the inverse of the normalized

sensitivity S.
bias voltage consists of the constant part V~O and of the

modulation voltage Vw. The normalized modulation volt-
s_dq Vb++c

du OO=s” f. (“13)
age is then denoted by v

n

Vm

‘=vbo++c”
(4)

When o = tiO, v = O. This leads to

l+V=

[

(@2-ai)(@;-@;)( ti2-u:) ‘/”I(~:-u;)(u’-ti:)(ti:-ti;)“
It is convenient to normalize, also, the frequency as fol-

lows:

:=s2, fori=l,2,3. (5)

In the vicinity of the operating point, the normalized

frequency is

(6)

where q = (u – UO)/uO is the normalized frequency change

(a very small number). The modulation curve is then

brought to its normalized form

(7)

If the lossless circuit between the varactor junction and the

transistor base has more than three finite natur~ frequen-

cies, expression (7) can be easily expanded to include any

additional zeros and poles. The conceptual advantage of

using the block diagram from Fig. 1 is describing the

modulation curve in terms of (normalized) poles and zeros,

irrespective of any particular circuit diagram.

III. SINGLE RESONATOR

The simplest possible two-port between the varactor and

the active device is a single series resonant circuit shown in

Fig. 3(a). The modulation curve (7) simplifies to

[ 1
l/Ll

l+u= l+ A1q+$q2 .

The constant Al is an abbreviation for

2
A1=—

1–Q:”

(8)

(9)

where S is the actual sensitivity in hertz per volt. Thus, the

normalized sensitivity of the circuit in Fig. 3(a) must

satisfy the following equation:

(“14)

The requirecl value of S. is typically a small number: at

~0 = 2 GHz, a sensitivity S= 4 MHz/V for a varactor
operating at P’b+ @c= 10 V gives the value of S. = 0.02.

The modulation curve is linearized by requesting C,== O.

This leads to

2

a=l+sl:”
(:15)

.

Since Q1 <1, a must be larger than unity. Therefore, the

only possible way to linearize the modulation curve for a

circuit consisting of a single resonator is to use a hyper-

abrupt varactor. Equations (14) and (15) can be used as

design expressions for choosing a correct varactor a for a
specified S.. As an example, for S. = 0.02, the required

varactor exponent is a =1.02. Even though hyperabrupt

varactors with a specific exponent are available, the single-

resonator circuit does not provide sufficient flexibility to

accommodate small variations in a. The circuit described

in the next section offers more degrees of freedom.

IV. Two COUPLED RESONATORS

Several authors ([1]–[4]) have shown that when the

osc–mod consists of two coupled resonant circuits, it is

possible to linearize the modulation curve by using conven-

tional varactors with a <1. For the inductively coupled

pair of lumped resonant circuits in Fig. 3(b), the position

of natural frequencies a ~, ti2, and Ug (when port 2 is

short-circuited) is such as shown in Fig. 2. The circuit

reactance Xi:, is a growing function of frequency displaying

two zeros denoted til and as and one pole denoted a2. In

order to achieve resonance with the varactor junction

capacitance, reactance Xi, must be positive. Therefore, the

operating frequency UO is situated above the zero ti~.

The linearity of the modulation curve for the circuit

consisting of two resonators can be studied by expanding

(7) in a three-term Taylor series
.

u = c~q + c,q’ + c3?f.
Since q is a small number, it is convenient to use the

(16)

binomial expansion to obtain first two terms of the Taylor Using the nctation from (9)

series for rJ as follows: 2
Ai=— fori=l,2,3 (:17)

u = CIq + C’q’., (lo) 1–Q;
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Fig. 4. Optimum position of naturaf frequencies for C2 = Cq = O, a = 0.5.

the coefficients in Taylor’s expansion are expressed as

follows:

C1=+(A1– A2+AJ (18)

[
C2=; C1+C:–:(A:–A;+A;)1 (19)

()C3=–+–++C2 ;+cl

++J4-A:+A;). (20)

The normalized sensitivity at the center frequency S.O is

usually specified at the outset of the design. Since S~O=

l/Cl, we obtain from (18)

A1– AZ+ A3=; . (21)
no

The linearity of the modulation curve requires C2 = O. This

results in

()A:– A:+ A:=; l++ .
no nO

(22)

Since there are three natural frequencies to be selected, it is

possible to introduce the additional requirement Cq = O,

obtaining the following equation:

The above three nonlinear equations must be solved

numerically in order to find the optimum position of

natural frequencies which force both the second and third

coefficient in the modulation curve (16) to vanish. For the

abrupt junction varactors with a = 0.5, the results of the

numerical solutions are shown in Fig. 4.

The calculated values L?l, !22, and fil~ can now be sub-

stituted in (7), and the relative frequency q can be gradu-

ally varied so that the normalized modulation curve u(q) is

evaluated. Instead of plotting this curve, the sensitivity

versus frequency has been computed by numerical differ-
entiation and plotted in Fig. 5. Three cliff erent values of

the normalized sensitivity are shown: S.. = 0.01, 0.02, and

0.03. Using the data computed in such a manner, it is

possible to read the values $2= and flu for which the

sensitivity S. departs one percent from its nominal value

S~o. The corresponding relative bandwidths

AKl=flu-flL

are summarized in Table I.
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Fig. 5. Normalized modulation curves for the naturaf frequencies from

Fig. 4. Curve D: Sno = 0.01, Curve E Sno = 0.02, Curve F S~o = 0.03.

TABLE I

s AQ (l%)
nO

ASi (1%)

(F, g. 5) (Fig. 9)

0.01 0.0109 0.0049

0.02 0.0214 0.0108

0.03 0.0319 0.[1191

Itis seen that the sensitivity curves are S-shaped because

the first and the second derivatives of sensitivity are zero.

It is further seen that the higher the chosen value of S~o,

the wider the bandwidth within which the departure from

linea!ity stays within prescribed limits. For instance, for 1

percent departure from linearity, the sensitivity S~o = 0.02

results in the relative bandwidth of 0.0214, while for S.. =

0.03 the relative bandwidth is 0.0319. These are optimum

values that can be achieved with a circuit which has three

finite natural frequencies as shown in Fig. 2. This is true

for any two-port with natural frequencies as shown in Fig.

2. For example, Aitchison and Gelsthorpe [7] have shown

that the circuit shown in Fig. 3(c) is also well-suited for

linearization of a voltage-controlled oscillator.

Starting from the prescribed values of optimal frequen-

cies, it is possible to synthesize the two-port lumped ele-

ments. As an example, suppose the sensitivity= 3 MHz/V

is desired at a carrier frequency of 1.75 GHz. The varactor

has O== 0.7 V, a = 0.5, and 1.4-pF junction capacitance at

V~o = 10 V. Using the natural frequencies from Fig. 4, the

element values for the lumped circuit in Fig. 3(b) are

obtained as follows: LO= 37.5 nH, CU= 0.291 pF, M =

0.594 nH, L,= 1.4 nH, C,= 6.42 pF.

V. CONTINUITY OF TUNING

At microwave frequencies, varactor Q is moderately low

so that the varactor junction in Fig. 1 must be modeled by

a series combination of the capacitance Cj and resistance



KAJFEZ AND HWAN: VARACTOR-CONTROLLED OSC-MOD CIRCUITS 623

Fig.

024681012 14s-1

6. Impedance Zil of the circuit from Fig. 3(b) (C2 = Cj

I

b
id Ril

Wn

w

u GROWS

= o).

10

[>

0,3

0.8
q

0.6

0.4
a=O.5

0.2
Qv= 10 q

s“

00L , , I
0.01 002 0.03 0.04

Fig. 8. Optimum position of natnraf frequencies for a = 0.5 and QU = 10,
satisfying the condition for continuous tuning.

of the resonant circuit on the varactor side when the

varactor is added

L?j = uj/tiO is defined by

The inductive coupling coefficient is

~2 _ ~2

LuLt “

(25)

(26)

(27)

Fig. 7. The loop of the impedance Z,l is situated below the real axis. Cj is the junction capacitance at the operating bias voltage,

and Q“ is the varactor Q at the same bias voltage

R,. For Q“ = 25 at the bias of 10 V, the resistance in the

circuit from the previous example is R, = 2.6 L?. Even Qu.~. (28)

though the two-port between ports 1 and 2 is lossless, the
tiOCjR,

input impedance Zil “seen” by the active device has a It is now pc)ssible to design the circuit in Fig. 3(b) so that
nonvanishing real part. For the circuit in the above exam- the frequency jumps will be prevented by forcing (24) to be
pie, the computed input impedance is shown in Fig. 6. an equality (l(oop almost touching the real axis). The other

The reactance passes through zero at 1.75 GHz as re- two equations for selection of natural frequencies, as be-
quired for the operation of the oscillator. Unfortunately, fore, me (21) and (22). The numerical solution of the three

the impedance forms a loop on the complex plane at equations for QU = 10 and a = 0.5 is shown in Fig. 8. It is

frequencies below 1.75 GHz. Such a 100p has an undesired interesting to mention that no solution can be found for

property as far as the active device is concerned: it is S~O outside the range shown in Fig. 8. Thus, for a given

possible for the oscillation frequency to jump from 1.75 value of Q“, there exists a limited range of sensitivities

GHz to about 1.6 GHz where another series resonance which permit the linearization of the modulation curve

occurs, and the reactance passes through zero again. In simultaneously with the condition that tuning be continu-

view of Kurokawa’s graphical interpretation [11] of oscil- Ous.

lation conditions, the frequency jump can be prevented by When !21, (12, and L?gare substituted in (7), it is possible
moving the loop below the real axis so that there till be to compute the modulation curve for the natural frequen-

only one intersection of the load line Zjl(u ) and the device ties that satisfy (21) and (22), and the equality in (24). The

line (here, the device line coincides with the real axis). The results are shown in Fig. 9. Note that the curves are

desired behavior of Zjl(ti) is shown in Fig. 7. U-shaped, and no longer S-shaped since Cq + O. However,
The loop will be located below the real axis when the the continuous tuning of the osc–mod is now assured hy

following approximate condition is satisfied for the circuit the fact that the 100p of the impedance Z,l is positioned

in Fig. 3(b): below the real axis.

()

The curves in Fig. 9 present the theoretical performance
k2Qu!21

!2;2Q; l+—
XJ; “

(24) limits which one can hope to approach in practice using

two coupled microwave resonators and satisfying the con-

dition of continuous tuning. The corresponding relative

The derivation of this condition is given in the Appendix. bandwidths for l-percent nonlinearity are summarized in

fii2 = u2/a0 is the normalized frequency of the pole from Table’ I. As an example, curve B (SnO= 0.02) shows that

Fig. 2, and 0,= ul/uO is the normalized resonant frequency the sensitivity departs for less than 1 percent from its
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Fig. 9. Normalized modulation curves for the natural frequencies from

Fig. 8. Curve ,4: S~O= 0.01, Curve B: $0= 0.02, Curve C: ,S.O= 0.03.

nominal value over the relative bandwidth of 0.0108. Thus,

for a varactor having a = 0.5 and Q.= 10, V~ = 10 V,

@c= 0.7 V, operating at ~0 = 2 GHz, the sensitivity of
S = 0.02. 2000/10.7= 3.7 MHz/V can be maintained

within l-percent limits in a bandwidth of 0.0108.2000 =

21.6 MHz.

VI. APPLICATION

The guidelines summarized in Fig. 9 were applied in the

development of the osc-mods used in a new generation of

analog microwave radios [12]. The discussion of the actual

circuits is outside the scope of this paper. It was found,

however, that although lumped-element models were used,

the guidelines were also applicable to distributed circuits.

This is to be expected since the only difference between the

two types of circuits is the presence of poles and zeros

above the pole-zero configuration chosen for the osc–mod.

These higher frequency poles and zeros usually have only a

minor effect on the linearity.

VII. CONCLUSIONS

An expression for the modulation curve has been derived

for a lossless two-port tuning circuit model. The require-

ments Cz = C~ = O in the Taylor series expansion of the

modulation curve leads to an optimum selection of reso-

nant frequencies fll, !22, and fl~, which are then used to

synthesize the tuning circuit. The resulting modulation

curve is S-shaped. For a circuit consisting of two coupled

resonators, the requirement for continuous tuning is used

in place of the condition C~ = O. Using this requirement,

new values of resonant frequencies fll, flz, and f13 were

computed. The corresponding modulation curves are now

U-shaped, and the bandwidth is approximately one-half

that of the ideal. Limits of modulation bandwidth were

tabulated for l-percent linearity for the ideal and practical

cases.

Except for the case of the osc–mod circuit containing a

single resonator, there is no evidence that hyperabrupt

,I,zool
Fig. 10. Two-port from Fig. 3(b) terminated in a varactor consisting of

R, and ~.

varactors offer any advantages over conventional abrupt

varactors, as far as linearity of the modulation curve is

concerned.

APPENDIX

When port 2 of the osc–mod is terminated by a varactor

consisting of the resistance R, and capacitance C, as

shown in Fig. 10, the input impedance Zil becomes

(@M)’
Z,l = jqLtB2 + R ● julLo~, “ (Al)

s

al is defined by (25) and U2 is given by

““A”

(A2)

~1 and 132are functions of frequency as follows:

/31(. )=:-3 (A3)
u

&(ti)=:_3.
(/r

(A4)

In the vicinity of frequency 01, ~1 is a fast-varying func-

tion, whereas & is a slow-varying function of a. In order

to find the point ti~ at which the slope of Zil is horizontal

(see Fig. 7), an approximation can be made that ~2 is

constant and only ~1 is variable. Then, the frequency ti~ is

found from

( -)

1
tim ==

‘[ 1– 2Q[
(A5)

where Q1 is defined as

(A6)

Since QI >> Q., we have am = U1. At this frequency, the

imaginary part of the impedance Z,l in (Al) is approxi-

mately gjven by

‘ii(%) = @2 W2(CIL) + +W,Q#2. (A7)

The loop will be situated below the imaginary axis when

X,l( am)< O. From this condition, one obtains the follow-

ing (using ti~ = Ul):

‘2(%:)
+&[ Q1k2 <0. (A8)

From (25), (26), (28), and (A6), it is possible to express Ql
in terms of QO as follows:

Q,. QU=.

u;

(A9)

Substituting (A9) into (A8), one obtains (24).
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